روی عامل های جبر فون نویمان ab-ba^* نگاشت های حافظ ضرب

پایان نامه
  • وزارت علوم، تحقیقات و فناوری - دانشگاه مازندران - دانشکده علوم پایه
  • نویسنده مجتبی نوری
  • استاد راهنما علی تقوی
  • تعداد صفحات: ۱۵ صفحه ی اول
  • سال انتشار 1391
چکیده

چکیده فرض کنید ??و ?? دو عامل از جبرهای فون نویمان باشند. برای ? ?? b و a ضرب a و b را به صورت زیر تعریف کنید ، [a,b]_*=ab-ba^* هدف از این پایان نامه این است که نشان د هیم که یک نگاشت دو سویی غیر خطی ?? ? ?? : ? حافظ ضرب بالاست اگر و تنها اگر ? یک *- یکریختی حلقه ای باشد. واژه های کلیدی:عامل های جبر فون نویمان ،جبر اول

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

عملگرهای کراندار طیفی روی جبر های فون نویمان

نشان می دهیم که هر عملگر کراندار طیفی پوشا و یکانی از یک جبر فون نویمان نامتناهی سره به روی جبر باناخ نیم ساده یک همومورفیسم جردن است.

15 صفحه اول

نگاشت های حافظ ضرب روی c^*-جبرها

فرض کنید ‎ a ‎ و ‎ b ‎، ‎-c^*جبر باشند و ‎ x ‎ یک باناخ a-دومدول اساسی باشد و همچنین t:a→b ‎ و ‎ s:a→x ‎ نگاشت های خطی پیوسته باشند که ‎ t ‎ پوشا است. اگر برای هر ‎ a,b∈a a ‎ که ‎ ab=ba=0 ‎ داشته باشیم ‎t(a)t(b)+t(b)t(a)=0,‎ ‎s(a)b+bs(a)+as(b)+s(b)a=0‎ مطالعه می کنیم که ‎ t=ωφ ‎ و ‎ s=d+? ‎ هستند که ‎ w ‎ در مرکز جبر ضربگر ‎ b ‎ قرار دارد و ‎ ∅:a→b ‎ بروریختی جردن می باشد و ‎ d:a→x ‎ مشتق ...

نگاشت های حافظ ضرب صفر روی [c^1[0,1

فرض کنید c^1[0,1]‎ جبر توابع مشتق پذیر پیوسته از فاصله واحد ‎[0,1] ‎ به توی ‎ c‎ باشد. هدف اصلی این پایان نامه مشخصه سازی نگاشت های دو خطی پیوسته از c^1[0,1]× c^1[0,1]‎ به توی فضای باناخ x ‎ مانند ? است مشروط به این که اگر ‎ f,g?c^1[0,1] ‎ که ‎ fg=0 ‎ آنگاه ? (f,g)=0‎. عملگر خطی ‎ tاز جبر باناخ a ‎ به توی جبر باناخ b‎ را حافظ ضرب صفر گوییم در صورتی که اگر ‎ a,b? a ‎ و ‎ ab=0 ‎ آنگاه ‎ta....

15 صفحه اول

نگاشت های حافظ طیف روی جبر ماتریس ها

مساله ی حفظ یک ویژگی خاص در اغلب قسمت های ریاضی دیده می شود در واقع یکی از مهمترین زمینه های تحقیقاتی در نظریه عملگرها بشمار می رود. نگاشت های نگه دارنده اولین بار توسط فر بنیوس مورد بررسی قرار گفت، او ثابت کرد که نگاشت خطی و حافظ دترمینان روی فضای ماتریس ها به فرم استاندارد است. در ادامه ی کار او مارکوس و مویلز ثابت کردند که اگر نگاشت خطی و حافظ طیف باشد به همین فرم است. باشد که در شرط n×n ...

نگاشت های حافظ مقایسه پذیری روی جبر اثرهای فضای هیلبرت

دراین پایان نامه ابتدا نگاشت های دوسویی با ضابطه های مشخص که حافظ مقایسه پذیری در هر دو جهت می باشند راروی جبر اثر های فضای هیلبرت شرح میدهیم .که این مجموعه را با (e(h بیان کرده ومجموعه ی همه ی عملگر های خوداحاقa : h ? hمی باشند که 0 ? a و a ? iمی باشند.سپس لم های مقدماتی رابیان می کنیم تا بتوانیم قضیه اصلی را که فرم نگاشت های دوسویی حافظ مقایسه پذیری در هر دو جهت را شرح می دهد اثبات کنیم .

نگاشت های جمعی حافظ ضرب جردن صفر روی جبرهای عملگرها

اگر ? نگاشت جمعی پوشا بین دو جبر عملگری باشد که در رابطه خاصی صدق می کند تحت شرایط خاص نشان می دهیم ? یک همومورفیسم جردن ضرب شده با یک عضو مرکزی است. در حالت خاص اگر k و h دو فضای هیلبرت با بعد نامتناهی(حقیقی یا مختلط) باشند(a=b(hو(b=b(kآنگاه عدد ثابت غیر صفر c و نگاشت وارونپذیر خطی یا مزدوج خطی u از h به k وجود دارند که در شرط خاصی صدق می کند.

15 صفحه اول

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه مازندران - دانشکده علوم پایه

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023